Yamabe Solitons on Conformal Almost-Contact Complex Riemannian Manifolds with Vertical Torse-Forming Vector Field
نویسندگان
چکیده
A Yamabe soliton is considered on an almost-contact complex Riemannian manifold (also known as B-metric manifold), which obtained by a contact conformal transformation of the Reeb vector field, its dual 1-form, B-metric, and associated B-metric. case in potential torse-forming field constant length vertical distribution determined studied. In this way, manifolds from one main classes studied are obtained. The same class contains conformally equivalent cosymplectic usual given An explicit five-dimensional example Lie group given, characterized relation to results.
منابع مشابه
Componentwise conformal vector fields on Riemannian almost product manifolds
On a Riemannian almost product manifold, the notion of a componentwise conformal vector field is introduced and several examples are exhibited. We show that this class of vector fields is a conformal invariant. For a compact manifold, a Bochner type integral formula for the Ricci tensor on such vector fields is obtained. Then, integral inequalities which link a curvature condition with the exis...
متن کاملOn Concircular and Torse-forming Vector Fields on Compact Manifolds
In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.
متن کاملClosed conformal vector fields on pseudo-Riemannian manifolds
∇XV = λX for every vector field X. (1.2) Here ∇ denotes the Levi-Civita connection of g. We call vector fields satisfying (1.2) closed conformal vector fields. They appear in the work of Fialkow [3] about conformal geodesics, in the works of Yano [7–11] about concircular geometry in Riemannian manifolds, and in the works of Tashiro [6], Kerbrat [4], Kühnel and Rademacher [5], and many other aut...
متن کاملSpaces of Conformal Vector Fields on Pseudo-riemannian Manifolds
We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.
متن کاملSemi-slant Pseudo-riemannian Submersions from Indefinite Almost Contact 3-structure Manifolds onto Pseudo-riemannian Manifolds
In this paper, we introduce the notion of a semi-slant pseudoRiemannian submersion from an indefinite almost contact 3-structure manifold onto a pseudo-Riemannian manifold. We investigate the geometry of foliations determined by horizontal and vertical distributions and provide a non-trivial example. We also find a necessary and sufficient condition for a semi-slant submersion to be totally geo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12010044